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Abstract

Most of the research efforts in the field of fluidized dryer design, focus on the evaluation of the appropriate structural and operational
process variables so that total annual plant cost involved is optimized. However, the increasing need for dehydrated products of the highest
quality, imposes the development of new criteria that, together with cost components, determine the design rules for any drying process.
Quality of dehydrated products is a complex resultant of properties characterizing the final products, where the most important one is color.
Color is represented by three parameters: redness, yellowness and lightness. These three parameters of a dried product should deviate
from that of its original material as little as possible. In this case, fluidized bed dryer design is a complex multi-objective optimization
problem, involving the color deviation and the unit cost of final product as an objective vector and as constraints described in process
models. The mathematical model of the dryer was developed and the fundamental color deterioration laws and critical financial parameters
were determined for the fluidized bed drying process. In this paper, non-preference multi-criteria optimization methods were used and the
Pareto-optimal set of efficient solutions was evaluated. An example for drying of sliced potato was studied in detail to demonstrate the
design procedure, the process performance as well as the effectiveness of the proposed approach. © 2000 Elsevier Science S.A. All rights
reserved.
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1. Introduction

Process design chiefly aims at the determination of var-
ious sizing and operational variables involved in the math-
ematical model describing the process itself on technical
and economic grounds. The evaluation of desired process
variable values for each design effort is carried out by
appropriately optimizing a suitable criterion chiefly on an
economical nature. In the case of dryers, design has become
an increasingly challenging problem which aims at the eval-
uation of the proper type of equipment, its associated flow-
sheet arrangement, its optimal construction characteristics
and the operating conditions involved in the overall design.
However, most design efforts in this field face problems of
extreme difficulty related to the complex drying conditions
that include many interconnected and opposing phenomena
[1]. In addition, although numerous theories have been de-
veloped for modeling the drying processes, the thermophys-
ical properties and transport coefficients in most models are
only approximately known, producing inaccurate or erro-
neous results on large scale industrial applications [2–7].
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Transferring mathematical programming analysis to this
area of dryer design revealed several issues regarding sensi-
tivity analysis with respect to process variables with a direct
impact on dryer performance, as well as consideration of
the actual operational performance under variable produc-
tion conditions and selection of dryer type with respect to
market and cost status. Several researchers have addressed
all these diversified fields of simulation and design for flu-
idized bed dryers. Jumah and Mujumdar [8] give the outline
of a computer program developed for the preliminary design
of a fluidized bed dryer. It is based on correlations extracted
from the literature and permits estimation of the energy
consumption as well as the installed and operational cost.
Maroulis et al. [9] developed a fluidized bed dryer simulator
based on a mathematical model describing heat and mass
transfer within the dryer. The model incorporates empirical
equations for the drying constant and the multi-dispersed
particle phase residence time. The experience from the ap-
plication of the simulator has been proved to be important
for the flexible operation of an existing industrial fluidized
bed dryer. Kiranoudis et al. [10] developed a mathematical
model for fluidized bed dryers. Design procedures aimed at
the determination of optimum sizing and operational char-
acteristics were carried out by appropriately optimizing the

1385-8947/00/$ – see front matter © 2000 Elsevier Science S.A. All rights reserved.
PII: S1385-8947(00)00140-6



2 M.K. Krokida, C.T. Kiranoudis / Chemical Engineering Journal 79 (2000) 1–12

total annual cost for a given product capacity. Kiranoudis
et al. [11] compared explicitly design results by evaluating
optimum configurations for a wide range of production ca-
pacity values. Once the dryer sizing variables were defined,
its operational performance was evaluated by comparing
the optimal operating cost versus production capacity for
predefined optimal design structures.

On the above-mentioned analysis, dryer design involves
solely variations over plant profit or cost (when production
capacity was given) as an objective function. The increasing
need for dehydrated products of highest quality standards,
requests the development of new criteria that, together with
cost, determine new design rules. Quality of dehydrated
products is a complex resultant of properties characteriz-
ing the final products, in which the most important one is
color. Color is determined as a three-parameter resultant,
whose values for products undergone drying should deviate
from the corresponding ones of natural products, as little
as possible [12]. In this case, dryer design is a complex
multi-objective optimization problem involving an objec-
tive function of unit cost and color deviation vector and
constraints derived from the process mathematical model.

In this work, we deal with the fluidized dryer design
problem based on product quality criteria combined with
cost. In this case, the optimal construction and operational
process variables are evaluated by appropriately optimizing
the product color degradation vector with unit product cost
simultaneously subject to constraints imposed by model
equations. Non-preference Pareto-optimization methodol-
ogy is adopted and appropriately analyzed. The full set of
efficient optimal solutions for the problem is evaluated and
the effect of optimal design variables on process construc-
tion and operational variables is investigated for a typical
industrial dryer design concerning sliced potatoes.

2. Mathematical modeling of fluidized bed dryers

Industrial fluidized bed dryers are the most popular fam-
ily of dryers for drying agricultural and chemical products
in dispersion or multi-dispersion state. In continuous in-
dustrial fluidized bed dryers, the particular solid phase is
completely dispersed in a vertically flowing gas stream as
a consequence of the buoyancy effect of the gas. Due to the
agitation in the fluidized bed, good mixing of the solid phase
is usually achieved. Moreover, the turbulent activity in the
bed, produces high rates of heat transfer between gas and
solid phases and results in uniform solids and gas tempera-
ture throughout the dryer. Fluidization takes place when the
gas superficial velocity varies between two extreme values
corresponding to fluidization and entrainment phenomena.
The particular gas velocities in this case are particularly in-
fluenced by particle density and size. The dryer is equipped
with an individual heating utility and fans for air recircula-
tion through the product. Steam-operated heat exchangers
are typically used for heating air that on entering the dryer

Fig. 1. Industrial fluidized bed dryer and its control facilities.

is mixed with the recirculation air at a point below the heat
exchange units. It is a common practice that within the dryer
interior, temperature and humidity of the air-drying stream
as well as its temperature diminution through the fluidized
solid bed are controlled. In this case, the final control ele-
ments are the steam valve, the drying air stream dampers and
air flowrate through the fans, that regulate the exchanged
heat rate at dryer heat exchangers, the flow rate of air streams
within the dryer and the drying rate, respectively. A typical
flowsheet with a sketch of the dryer, as well as the arrange-
ment of its overall control facilities, is presented in Fig. 1.

The mathematical model of the fluidized bed dryer in-
volves heat and mass balances of air and product streams,
as well as heat and mass transfer phenomena that take place
during drying. The system of equations generated is subject
to thermodynamic and construction constraints that must be
taken into consideration. In particular, the overall humidity
balance in the dryer including recycle and its individual tank
excluding recycle, respectively, is given by the following
equations:

FS(XS0 − XS) = FAC(XA − XAC) (1)

FS(XS0 − XS) = FA(XA − XA0) (2)

The corresponding heat balances assuming negligible heat
losses, are given as follows:

FAC(hAC − hA) = Q − FA(hA − hA0) (3)

FAC(hAC − hA) = FS(hS − hS0) (4)

Heat and mass transfer phenomena during drying are
complex and their solution demands considerable compu-
tational time. They involve coupled transfer mechanisms,
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both within the solid and the gas phase. In this case, a sim-
plified mathematical model is considered. This version has
an exponential form and contains a phenomenological mass
transfer coefficient, termed as the drying constant. The dry-
ing constant chiefly accounts for mass diffusion within the
solid phase, but also embodies boundary layer phenomena
when it is considered to be a function of all process variables
affecting drying. Sufficient accuracy is combined with suf-
ficiently low computational time. With these assumptions,
mass transfer is expressed by the following equation:

XS = XSE + (XS0 − XSE) exp(−kM tR) (5)

The retention time within the fluidized bed dryer is chiefly
influenced by process hydrodynamics and particle size dis-
tribution. A detailed account on this issue can be found in
Maroulis et al. [9]. For the purpose of this study that is far
beyond giving a detailed account of the single objective op-
timization case, uniform particle size distribution was taken
into consideration. Heat transfer is chiefly controlled by the
heat transfer coefficient at the air boundary layer. For the
purpose of developing the particular mathematical model,
it is assumed that the heat transfer coefficient takes a value
high enough to allow the product stream leaving the dryer
to be in thermal equilibrium with the air stream leaving the
solid phase. This assumption removes the need for an unnec-
essary differential equation, which would not improve the
model greatly. On the basis of the above, heat transfer within
the dryer is expressed by means of the following equation:

TS = TA (6)

The air water activity of the drying air stream is calculated
by the basic equation of a psychrometric model as follows:

aWC = XACP

(λB + XAC)P S
(7)

Drying air flowrate within the dryer is given by the fol-
lowing equation expressing basic aerodynamics within the
dryer:

FAC = ρACAVACε (8)

In this relation, air flowrate is given as a function of the
porosity of the fluidized bed. The corresponding bed height
is given by the following equation:

H = FS(1 + XS0)tR

ρSA(1 − ε)
(9)

which is an alternative expression for solids holdup in the
dryer. The gas flow through the fluidized bed, can be treated
as an equivalent one through a porous body with given poros-
ity [13]. It is suggested for the condition of incipient flu-
idization, but it can safely be used for all the fluidization
region since pressure drop remains constant from fluidiza-
tion up to entrainment [14]. Thus, pressure drop along the
dryer is given by the following equation:

1P = (ρS − ρAC)(1 − ε)Hg (10)

Heat balances at the heat exchanger section of the dryer
are given as follows:

Q = FST1HS (11)

Q = USTAST
TAC − TAM

ln((TST − TAM )/(TST − TAC))
(12)

The temperature of the mixed recirculation and fresh air
streams can be calculated by means of the enthalpy balance
expressed by the following equation:

FAChAM = FAhA0 + (FAC − FA)hA (13)

The electrical power consumed by the operation of the
fans is expressed by the following equation:

E = 1PFAC (14)

The temperature diminution of the drying air stream in
passing through the solid particles is given by the following
equation:

1T = TAC − TA (15)

The temperature diminution of the drying air stream in
passing through the solid particles fluidized phase, should
not exceed a maximum value that would guarantee uniform
drying throughout dryer, because it prevents creation of axial
mass and temperature gradients within the solid particles.
This is expressed by the following inequality:

0 ≤ 1T ≤ 1T max (16)

Furthermore, thermodynamics dictate that the material
moisture content of the product stream on leaving the dryer
should be greater than the corresponding moisture content
at equilibrium imposed by the air operating conditions in
the dryer, as proposed by the following relation:

XS ≥ XSE (17)

Fluidized bed porosity is given by the Todes equation, in-
volving the dimensionless Reynolds and Archimedes num-
bers and is recommended for the related calculations for the
entire fluidization region [15,16]

ε =
(

18 Re+ 0.36 Re2

Ar

)0.21

(18)

Re= VACρACdP

µAC
(19)

Ar = (ρS − ρAC)gρACd3
P

µ2
AC

(20)

Fluidization is guaranteed if drying air stream velocity
varies between two extremes. Incipient fluidization velocity
calculated by the following equation, is derived from the
theory of free settling:

V min
AC =

[
4

3

dP(ρS−ρAC)

ρAC

1

(0.4+24/Re+4/Re1/2)

]1/2

(21)
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Strumillo and Kudra [16] list over 20 equations for the
determination of this variable as suggested from various re-
searchers. Romankov and Rashkovskaya [17] recommended
the following equation for the calculation of entrainment gas
velocity:

V max
AC = V min

AC

(
11.75− 0.1046

1 + 0.00373 Ar0.6

)
(22)

The economic evaluation of the dryer is based upon the
determination of its total annual cost. The corresponding
capital cost is affected by the total dryer area (cross section
and peripheral), the area of heat exchangers and the installed
power of the fans involved. All capital cost components
obey economy of scale laws, i.e. increase in the unit size
with respect to its characteristic dimensions will contribute
reduced additional capital cost, per unit of size

CCP = αDA
ηD
T + αFEηF + αSTA

ηST
ST (23)

The operational cost of the plant involves thermal and
electrical energy, consumed by the heat exchangers and fans,
respectively

COP = cEE + cSTFST (24)

On the basis of the above, the total annual cost of the
plant can be expressed by means of the following equation:

CT = eCCP + tOPCOP (25)

The unit cost of the final product can be readily calculated
by means of the following equation:

c∗ = CT

FS(1 + XS)tOP
(26)

Product color changes measured by tristimulus reflectance
colorimetry can be used to predict both chemical and qual-
ity changes in a food system. The Hunter color parameters
have previously proved valuable in describing visual color
deterioration and providing useful information for quality
control in final products [12]. The rate of color changes for
the ith index of each of the three Hunter color parameters
(namely redness,α, yellowness,b, and lightness,L) can be
expressed by the following first order kinetic model [12]:

1Ci = (Ci
E − Ci

0) + (Ci
0 − Ci

E) exp(−ki
CtR) (27)

The properties and transfer coefficients involved in the
mathematical model of the dryer are generally considered to
be functions of the process variables. Specific enthalpies of
product and air streams are taken to be linear functions of
temperature and material moisture content, since the corre-
sponding specific heats of solid particles, dry air, water, and
vapor are assumed to be constant within the desired temper-
ature range [18]

hS = cPSTS + XScPWTS (28)

hA = cPATA + XA(1H0 + cPVTA) (29)

Equilibrium of water between the solid and the gas phase
is described by the process desorption isotherms, modeled
by means of the theoretically determined GAB equation,
which sufficiently describes the equilibrium data for a wide
range of products used in the dehydration process [19]

XSE = XMCTaW

(1 − KaW)([1 − (1 − C)KaW]
(30)

C = C0 exp

(
−1HC

RTS

)
(31)

K = K0 exp

(
−1HK

RTS

)
(32)

The drying constant as a function of drying air operating
conditions as well as the characteristic dimension of material
particles is given by the following empirical equation [1]:

kM = k0T
k1
ACX

k2
ACV

k3
ACd

k4
P (33)

Water vapor pressure can be calculated by means of the
empirical Antoine equation given below:

P S = exp

(
A1 − A2

A3 + TS

)
(34)

The latent heat of vaporization of water is given by the
Clausius–Clapeyron equation that follows, which makes use
of the previous vapor pressure equation:

1HS = −R
d(ln P S)

d(1/TST)
(35)

Air density can be calculated by assuming ideal gas be-
havior for air streams, as follows:

ρAC = P

MARTAC
(36)

The effect of drying air operating conditions on color ki-
netics is introduced through its effect on the color degrada-
tion equilibrium value and rate constant for theith parameter
of color, as follows [12]:

Ci
E = Ci

E0T
ni

T
ACX

ni
X

AC (37)

ki
C = ki

C0T
mi

T
AC X

mi
X

AC (38)

Eqs. (1)–(38) constitute the mathematical model of the flu-
idized bed dryer. They involve three design variables that
must be optimally set so that the complete dryer mathe-
matical model is solved; namely drying air stream temper-
ature and humidity,TACandXAC, and the drying air stream
temperature diminution through the fluidized bed dryer,
1T. These variables can represent the process in a more
straightforward way, due to their explicit meaning, and all
other variables involved in the overall process model can
be calculated accordingly.
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3. Pareto optimization

Multi-objective optimization extends optimization theory
by permitting multiple objectives to be optimized simulta-
neously. It is known by various names which include Pareto
optimization, vector optimization, efficient optimization and
multi-criteria optimization. The solutions are referred to as
Pareto optima, vector maxima, efficient points, non-inferior
and non-dominated solutions. In all cases, multi-objective
optimization is regarded as a mathematical process seeking
a consensus in which many objectives are balanced so that
the improvement of any single objective will result in a neg-
ative impact on at least one other objective. Such a system
of objectives is said to be Pareto optimal at any point for
which this is true. The Pareto-optimal solution is not unique
(unlike the single optimization case), but is a member of
a set of such points which are considered equally good in
terms of the vector objective. This space may be viewed as
a space of compromise solutions in which each objective
could be improved, but if it were, it could be improved at
the expense of at least one other objective. Geometrically,
a Pareto-optimal point corresponds to a saddle point in the
space formed by the objectives as coordinates. Infinitesimal
motion away from the Pareto-optimal point increases the
value of at least one objective as coordinate.

Mathematically speaking, multi-objective optimization
is an extension of ordinary single-objective optimization
where the objective function is a vector of functions over
the feasible space of decision variables. A superior solution
of the optimization problem is the set of all feasible points
where there does not exist another feasible point perform-
ing better in all components of the objective vector [20].
Typically, however, at least two of the objectives are con-
flicting in nature. For this reason, a superior solution to the
multi-objective optimization problem rarely exists. In prob-
lems such as these, the decision-maker is interested in find-
ing efficient (also known as non-dominated or non-inferior)
solutions. An efficient solution is the set of all feasible points
where there does not exist another feasible point which
does at least as well on every single objective, and better
on at least one objective [20]. In other words, a feasible so-
lution is non-inferior if there does not exist another feasible
solution that will yield an improvement in one objective
without causing degradation in all other objectives. For all
non-inferior solutions the decision-maker will always con-
sider how much of one objective is able to be given up for
how much improvement in some other objectives. A superior
solution (if it exists) is always an efficient solution, whereas
an efficient solution is not necessarily a superior solution.

Typically, the feasible solutions to the multi-objective op-
timization problem are only partially ordered by the ‘more
is better’ assumption. Hence, in most cases, there will be
many efficient solutions. One of these efficient solutions will
be preferred by the decision-maker, in terms of its outcome,
at least as much as any other feasible solution. However,
determining what the solution is, assuming the existence of

at least two efficient solutions with different outcomes, re-
quires further information from the decision-maker concern-
ing his preferences. One way of expressing this information
is through the use of a value function over the multiple ob-
jectives of the problem. In essence, this procedure recasts
the multiple objective problems into one involving a single
objective, that is to say optimization of the value function.
Two mappings are involved in this case; one from the deci-
sion variable space to the objective space and a second from
the objective space to the value space. Solving this type of
problem means finding the solution that optimizes the value
function over all feasible solutions. Such a solution is called
a best compromise solution, in the sense that is typically a
compromise among the problem’s various objectives. Under
the above-mentioned concepts, if a value function could be
easily found for each and every multi-objective mathemat-
ical problem, there would be no need for dealing with such
kind of problems since they would become a trivial case
of a general single-objective optimization problem. How-
ever, a value function is often very difficult to specify for
a particular decision-maker or a group of decision-makers.
But, assuming the existence of more than one efficient so-
lution, at least some information can be obtained regarding
the decision-maker’s preference structure in order to find
a best compromise solution. Hence, in addition to an opti-
mization scheme, some procedure to obtain this preference
information is required. Generally, solution techniques for
multi-objective mathematical programming problems can
be classified according to the timing of the requirements of
the preference information versus the optimization. In par-
ticular, there are three different approaches depending on the
articulation of the decision-maker’s preference function [20]
• Prior to the optimization (a priori articulation of prefer-

ences).
• During, or in sequence with, the optimization (progressive

articulation of preferences).
• After the optimization (a posteriori articulation of prefer-

ences).
The last case requires the determination of the complete

set of non-inferior solutions before selecting a compromise
point. In this work, we will adopt this last case that actually
corresponds to a non-preference procedure. In this way, by
evaluating the complete efficient solution space we can leave
the choice of compromise to ad-hoc process experts.

4. Pareto optimization of fluidized bed dryers

On the basis of the above, a design strategy for the specific
dryer type under product quality constraints can be postu-
lated. Given a specified product with a predefined flowrate,
to be dried from an initial to a desired moisture content level,
under constraints imposed by thermodynamics and construc-
tion, the following must be determined:
• The appropriate sizing of the equipment (construction

characteristics).



6 M.K. Krokida, C.T. Kiranoudis / Chemical Engineering Journal 79 (2000) 1–12

• The best set points of controllers (operating conditions).
The Pareto-dryer design problem which corresponds to

the above-mentioned postulation and which strives for the
determination of optimal process variables so that product
quality of the final product is optimally weighted against unit
product cost, can be formulated into a multi-objective op-
timization non-linear mathematical programming problem
where the vector of product color deterioration parameters
and the unit product cost should be minimized subject to
process model constraints, as follows:

min
TAC,XAC,1T

(1α, 1b, 1L, c∗) (39)

The proposed methodology was applied to the design of
a dehydration plant that treats 200 t per year db of sliced
potato, on a 2000 h per year basis (i.e. 100 kg/h db). The
raw material is to be dried in the form of cubes cut in
10 mm size, with initial material moisture content of 5 kg/kg
db. The desired dried product material moisture content is
0.05 kg/kg db. Fresh air is available with a moisture content
at 0.01 kg/kg db and 25◦C cold conditions, typical atmo-
spheric conditions for Greece. Uniform drying is achieved
by not allowing drying air temperature diminution through
the fluidized bed to exceed a value of 10◦C. The cost of the
fluidized bed tank is US$ 1600/m2 increased with a power
law of 0.75 as total dryer area varies. Heat exchangers and
fans add a capital cost of US$ 480/m2 and US$ 500/kW h,
increased by 0.7 and 0.3 laws respectively. Heat exchangers
used are of the plate type for heating air. Steam is available

Fig. 2. Effect of process variables on color parameters.

at 150◦C and its unit cost is 0.2 c/kg, while electrical energy
costs 8 c/kW h. The capital cost will be paid off within a pe-
riod of 5 years. Economic figures refer to the Greek market
for the year 1998.

The way in which process decision variables affect each
one of the color objective vector components and for the
specific product studied, is given in Fig. 2. Krokida et al.
[12] have shown that the Hunter Lightness parameter is in
fact unaffected by the entire process. As a consequence, the
deviation of this component value throughout drying is neg-
ligible and, therefore, we will not take it into consideration
for the evaluation of the optimal objective vector. The pro-
cess variables that affect the remaining two color parameters
(redness and yellowness) are the drying air conditions (tem-
perature and humidity) as well as the corresponding drying
time. Redness deviation increases as drying temperature in-
creases for the same air humidity level, while the completely
inverse phenomenon takes place for the case of yellowness
deviation. The temperature effect is more intense in the case
of redness deviation regarding the equilibrium values. Red-
ness deviation increases as air humidity decreases for the
same value of air temperature while, once again, the oppo-
site phenomenon occurs for yellowness deviations. The hu-
midity effect is more intense in the case of redness deviation
regarding the equilibrium values, even more intense than in
the case of temperature. Redness deviation kinetics are char-
acterized by greater time constants with respect to yellow-
ness deviations. Clearly, redness deviations will reach the
equilibrium value imposed by drying air conditions slower
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Fig. 3. Unit cost objective contours.

than the case of yellowness deviations. This in principle dif-
ferent behavior of color parameters during drying character-
izes their optimality behavior when they are combined with
process equations within the framework of multi-objective
optimization.

A convenient way of approaching multi-objective simulta-
neous optimization for the entire process would be to exam-
ine each single-objective optimization separately. To be more
specific, let us focus in each of the three objectives and opti-
mize each one separately under a single-objective optimiza-
tion schema. A global optimum was found for unit cost at air
conditions 0.097 kg/kg db and 141.7◦C, corresponding to an
objective vector of (19.772, 0.241) for color and 7.29 c/kg
db for unit cost. The unit cost contours of the process are
given in Fig. 3. In this figure, several characteristic opti-
mization curves are gathered, which is basically the psychro-
metric chart corresponding to drying air conditions; namely,
the air water saturation curve (water activity equals to one),
the constraint imposed by thermodynamics through Eq. (30)
and the lower line limits the objective space to drying air
humidity values greater than that of fresh air. In the same
sense single-objective optimization contours for the color
parameter vector are given in Fig. 4. A global optimum was
found for redness deviation at air conditions 0.366 kg/kg db
and 95.22◦C, corresponding to an objective vector of (2.178,
2.578) and at unit cost value of 16.850 c/kg db. On the other
hand no optimal value could be found for yellowness devia-
tion since even smaller values could be obtained as tempera-
ture approached infinity and humidity was reaching fresh air
values, an indication of functional strict monotony for the
entire range of objective space. The difference between these
two last objectives’ behavior is definitely attributed to the
different time constant related to color deterioration kinet-
ics. Redness characterized by a larger time constant reaches
its equilibrium value more slowly and as drying air condi-
tions approach values in the vicinity of yellowness curve
where outlet product material moisture content reaches equi-

librium. Therefore an infinite drying time is implied for these
values, an abrupt movement of this variables takes place
and, as a consequence, a global optimum is formed. This
is definitely not the case for yellowness deviations, where
the kinetic time constant is lower and equilibrium is reached
faster. In all cases, the optimal value for temperature diminu-
tion was the one of the constraint in Eq. (16).

Let us depict this behavior geometrically in the objective
space formed by the two components of air condition (dry-
ing air temperature and humidity), as the third decision vari-
able seems to be unaffected by the optimization procedure
and for the case of the one color component (redness) and
unit cost of the process. Global optimum for redness devia-
tions as well as the corresponding redness deviation contour
estimated for redness deviation values of 5 are also given in
Fig. 5. An additional curve is a constant unit cost curve cal-
culated for unit cost constant value of 9 c/kg db. Clearly, the
form of both curves indicate global optimal objectives for
the specific corresponding objective functions and we there-
fore expect closed curves for the single-optimization prob-
lems, as we have already mentioned. These curves although
considered as random contours, were appropriately chosen
to show something even more interesting. These curves have
only one point of contact, in other words contour slopes at
that point are the same, or the corresponding function deriva-
tives are equal. This unique point can be easily shown to be
a Pareto-optimal point of the multi-objective optimization
problem. In fact, for this point there does not exist another
feasible point which does at least as well on both single ob-
jectives, and better on at least one of the two. For this point,
it can be easily shown using differential geometry that

det

[
∂(1α)/∂TAC ∂(1α)/∂XAC
∂(c∗)/∂TAC ∂(c∗)/∂XAC

]
= 0 (40)

The locus of all decision points fulfilling Eq. (40) is the
Pareto-optimal curve given in this figure and this is the
complete set of Pareto-optimal solutions for the specific
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Fig. 4. Color parameters objective contours.

Fig. 5. Pareto-optimization procedure.
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Fig. 6. Pareto-optimal set for fluidized dryers.

sub-problem studied. Obviously, the decision-maker will
search for his compromise solutions within the single-
dimensional range of this curve. The Pareto-optimal solution
of the multi-objective optimization sub-problem discussed
is given for the two-dimensional objective space in the
curve of Fig. 5. This figure clearly shows the trade-offs
between redness and unit cost which should be taken into
account by decision makers.

The above-mentioned conclusions were obtained by con-
sidering only two components of the optimization vector.
Clearly, similar Pareto-optimal curves can be derived when
considering the other two pairs on their own. This procedure
yields the envelope of the shaded area of Fig. 6. For these
curves, the following condition hold:

det

[
∂(1α)/∂TAC ∂(1α)/∂XAC
∂(1b)/∂TAC ∂(1b)/∂XAC

]
= 0 (41)

Fig. 7. Effect of steam temperature on Pareto-optimal region.

det

[
∂(c∗)/∂TAC ∂(c∗)/∂XAC
∂(1b)/∂TAC ∂(1b)/∂XAC

]
= 0 (42)

The actual Pareto-optimal space of the entire four-component
multi-objective design problem is the shaded area of Fig. 6.
Obviously, the decision-maker will search for his compro-
mise solutions within the two-dimensional space. Steam
temperature is an important process variable that affects the
unit cost and therefore the Pareto-optimal space of objec-
tives. The Pareto-optimal space for the entire multi-objective
optimization problem as a function of steam temperature is
given in Fig. 7. The Pareto-optimal curve for the two-color
component vector remains the same since it is not affected
by the steam temperature (solely affected by process vari-
ables). On the other hand, both two-component Pareto sets
involving cost are indeed affected by steam temperature
and they are responsible for the different extend of the
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Fig. 8. Pareto-optimal objective space.

Fig. 9. Pareto-optimal process construction variables.
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Fig. 10. Pareto-optimal operational variable.

entire Pareto space of this process. The different Pareto
regions are appropriately depicted in this figure as steam
temperature varies. In the same figure the locus of global
unit cost optima using steam temperature as the indepen-
dent variable is given. The shape of this curve definitely
affects the curvature of the Pareto space of the optima.The
complete process objective space is given in Fig. 8. In this
particular figure, unit cost contours are given confined by
Pareto-optimal space for the remaining color components
space boundaries. If we reduce our demand for unit cost
above 8 c/kg db, optimal yellowness deviation values can be
achieved for values lower than 0.5, while redness deviation
in this case can be any value above around 5. We can obtain
lower unit cost designs for fluidized beds examined, while
redness deviation is kept to the minimum, but in this case,
yellowness deviation is far from its optimal value.

The way that certain process variables (construction and
operational) vary with the Pareto-optimal solution obtained
is given in Figs. 9 and 10. We observe similar behavior
regarding the heat exchanger and fluidized bed area, while
for drying air stream flowrate, the Pareto solutions are strictly
close and are not affected by drying air stream temperature.
Again, the appropriate design could be easily determined
regarding the desire of the decision-make over the complete
set of derived Pareto-optimal curves.

5. Conclusions

Fluidized bed dryer design based on combined cost and
product quality criteria is demanded by the increasing need
for dehydrated products of highest quality standards. This
problem can be appropriately formulated into a multi-
objective non-linear mathematical programming problem
where the final product color parameter vector together with
unit cost is optimized subject to constraints imposed by ther-
modynamics, construction, and modeling. Non-preference

multi-criteria optimization methods can be used and the
Pareto-optimal set of efficient solutions can be evaluated as
the single-dimensional locus of decision variables’ points
fulfilling a specific analytical relationship. Decision-making
can therefore be based on the Pareto-optimal solution
obtained.

6. Nomenclature

A dryer cross-section area (m2)
Ar Archimedes number
AT dryer total peripheral and cross section area (m2)
Aj parameter of Eq. (34) wherej=1, 2, 3
AST heat exchanger area (m2)
aWC drying air stream water activity
b yellowness
Ci color value of parameteri
C parameter of Eq. (30)
c∗ unit cost of final products ($/kg db)
C0 parameter of Eq. (27)
CCP capital cost ($)
cE unit cost of electricity ($/kW h)
Ci

E equilibrium value of parameteri
CE0 parameter of Eq. (37)
COP operational cost ($/h)
C0 parameter of Eq. (31)
Ci

0 initial value of parameteri
cPA specific heat of air (kJ/kg K)
cPS specific heat of solid (kJ/kg K)
cPV specific heat of water vapor (kJ/kg K)
cPW specific heat of water (kJ/kg K)
cST unit cost of steam ($/kg)
CT total annual cost ($ per year)
db dry basis
dP particle diameter (m)
E electrical power consumed at dryer fans (kW)
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e percentage of capital cost on annual rate
FA fresh air stream flowrate (kg/h db)
FAC drying air stream flowrate (kg/h db)
FS product stream flowrate (kg/h db)
FST steam flowrate (kg/h)
g gravitational constant (m/s2)
H bed height (m)
hA specific enthalpy of outlet air stream (kJ/kg)
hA0 specific enthalpy of fresh air stream (kJ/kg)
hAC specific enthalpy of drying air stream (kJ/kg)
hAM specific enthalpy of mixed recirculation and

fresh air streams (kJ/kg)
K parameter of Eq. (30)
K0 parameter of Eq. (31)
kj parameter of Eq. (33) wherej=0, . . . , 4
Ki

C rate of color deterioration constant of
parameteri (1/h)

kC0 parameter of Eq. (38)
kM drying constant (1/h)
L lightness
MA molecular weight (kg/kg mol)
mT, mX parameters of Eq. (38)
nT, nX parameters of Eq. (37)
P absolute pressure (kPa)
PS vapor pressure of water (kPa)
Q heat exchanged at dryer heat exchangers (kW)
R gas constant (kJ/kg K)
Re Reynolds number
XA outlet air stream humidity (kg/kg db)
XA0 fresh air stream humidity (kg/kg db)
XAC drying air stream humidity (kg/kg db)
XS outlet product stream material moisture

content (kg/kg db)
XS0 inlet product stream material moisture

content (kg/kg db)
XSE equilibrium product stream material moisture

content (kg/kg db)
tOP total operating time for dryer operation

(h per year)
tR residence drying time (h)
TA outlet air stream temperature (◦C)
TA0 fresh air stream temperature (◦C)
TAC drying air stream temperature (◦C)
TAM mixed recirculation and fresh air stream

temperature (◦C)
TS outlet product stream temperature (◦C)
TS0 inlet product stream temperature (◦C)
UST overall heat transfer coefficient (kW/m2 K)
V max

AC incipient fluidization velocity (m/s)
V min

AC entrainment fluidization velocity (m/s)
wb wet basis

Greek letters

α redness
αD, αF, αST cost parameters of Eq. (23)

1HS latent heat of vaporization of water (kJ/kg)
1HS0 latent heat of vaporization of water at

reference temperature 0◦C (kJ/kg)
1HC parameter of Eq. (31)
1HK parameter of Eq. (32)
1T temperature diminution through particles

(◦C)
1Tmax maximum allowed temperature

diminution through particles (◦C)
ε porosity
λB water to air molecular weight ratio
ηD, ηF, ηST cost parameters of Eq. (23)
ρAC drying air density (kg/m3)
ρS solid particle density (kg/m3)
µA viscosity (Pa s)

Symbols
1 deviation
det determinant
i index of color parameter
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